Field isomorphisms of *p*-adic fields

Nataniel Marquis

Let p be a prime. Using [Rib99, Chapter 3, X], we can obtain that any field isomorphism between p-adic fields (i.e. finite extensions of \mathbb{Q}_p) is continuous. This short note aims to give an alternative proof using only the structure of the description of the multiplicative group of these fields given in [Neu99, Chapter II, Proposition 5.7].

Lemma 0.1. Let K be a p-adic field and q the cardinal of its residue field. Then

$$u \in \mathcal{O}_K^{\times}$$
 iff u^{q-1} has n-th roots for all $\gcd(n,p) = 1$.

Proof. We have an isomorphism

$$K^{\times} \cong \pi^{\mathbb{Z}} \times \mu_{q-1} \times \mu_{p^{\infty}}(K) \times \mathbb{Z}_{p}^{d}$$

where μ_{q-1} are the (q-1)-th roots of unity and $\mu_{p^{\infty}}(K)$ is the subgroup of roots of order a power of p, π is a uniformizer and the pre-image of \mathbb{Z}_p^d is included into \mathcal{O}_K^{\times} . Any element of $\mu_{p^{\infty}}(K) \times \mathbb{Z}_p^d$ has roots of any order prime to p. Any non-trivial element of $\pi^{\mathbb{Z}}$ doesn't have all roots of order prime to p. We conclude by noticing that $u^{q-1} \in \pi^{\mathbb{Z}} \times \mu_{p^{\infty}}(K) \times \mathbb{Z}_p^d$ with trivial component on $\pi^{\mathbb{Z}}$ iff u belonged to \mathcal{O}_K^{\times} .

Lemma 0.2. Let K be a p-adic field. Then

u is a uniformizer or an inverse of a uniformizer iff it is of infinite order and $u^{\mathbb{Z}} \subset K^{\times}$ is split.

Proof. We decompose again

$$K^\times \cong \pi^{\mathbb{Z}} \times \mu_\infty(K) \times \mathbb{Z}_p^d$$

and notice that $\mu_{\infty}(K)$ is the torsion part of K^{\times} . Write $u=(\pi^n,\zeta,v)$. If u is not of finite order then $n\neq 0$ or $v\neq 0$ thanks to.

If u is a uniformizer or an inverse of such, $n=\pm 1$. Thus, $\mathcal{O}_K^\times\subset K^\times$ gives the desired splitting.

If $|n| \geq 2$ the quotient $K^{\times}/u^{\mathbb{Z}}$ has torsion isomorphic to $\mathbb{Z}/n\mathbb{Z} \times \mu_{\infty}(K)$ hence the exact sequence cannot be split.

If n=0, then $v\neq 0$ and upon chosing a correct basis of (e_i) of \mathbb{Z}_p^d we can suppose that $v=p^ke_1$ for $k\geq 0$. Then, for $x\in \mathbb{Z}_p\backslash \mathbb{Z}$, the image of p^kve_1 is infinitely divisible in $K^\times/u^\mathbb{Z}$. Hence the exact sequence is not split. \square

Proposition 0.3. Any field isomorphism of p-adic fields is continuous.

Proof. Let f be a field isomorphism of a p-adic field K. By the first lemma $f(\mathcal{O}_K^\times) = \mathcal{O}_K^\times$. Let π be a uniformizer. By the second lemma $f(\pi)$ or $f(\pi)^{-1}$ is a uniformizer. Writing $p = \pi^{\nu}u$ with $\nu \geq 0$ and $u \in \mathcal{O}_K^\times$ we compute

$$1 \ge |p|_K = |f(p)|_K = |f(\pi)^{\nu} f(u)|_K = |f(\pi)|_K^{\nu}.$$

Hence, $f(\pi)$ is a uniformizer. This finishes to prove that f preserves the norm.

References

- [Neu99] Jürgen Neukirch. *Algebraic Number Theory*. Vol. 322. Grundlehren der mathematischen Wissenschaften. Springer Link, 1999.
- [Rib99] Paul Ribenboim. *The Theory of Classical Valuations*. Springer Monographs in Mathematics. Springer, 1999.